

MINIMAL SURFACES

IN HYPERBOLIC GEOMETRY

Winter School Côte d'Azur

Extra notes

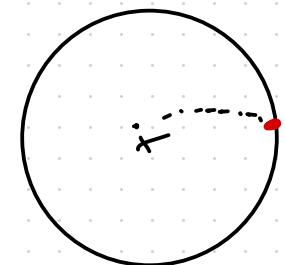
Question : More "natural" conditions ensuring uniqueness of the minimal surface ?

Let (M, h) complete hyperbolic mfd, $M \cong S \times \mathbb{R}$.

- (M, h) complete $\Rightarrow (M, h) \cong \mathbb{H}^3 / \Gamma$
 $\Gamma \subset \text{PSL}_2(\mathbb{C})$ discrete, $\Gamma \cong \pi_1 S$

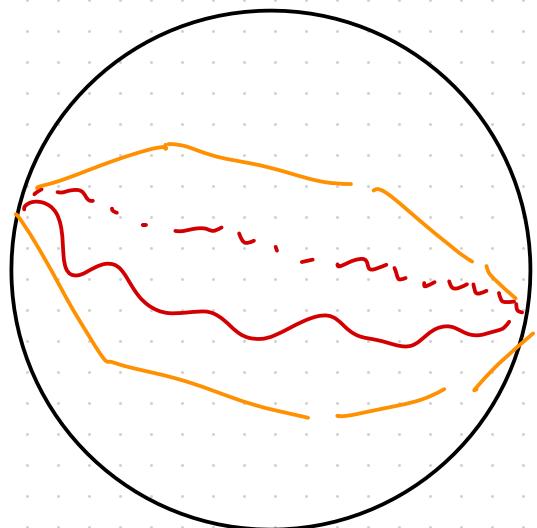
- limit set

$$\Lambda(\Gamma) := \left\{ \begin{array}{c} \text{accumulation points} \\ \text{of } \Gamma \cdot x_0 \end{array} \right\} \subset \partial_\infty \mathbb{H}^3$$



• Fact: (M, h) is quasi-Fuchsian

$\Leftrightarrow \Lambda(\Gamma)$ is a Jordan curve



" \Leftarrow " $\mathcal{C}(M)$ = convex hull of $\Lambda(\Gamma)$

is geodesically convex
and compact

- In fact, $\Lambda(\Gamma)$ is a quasi-circle

A map $f: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ is K -quasiconformal

$$\mathbb{D}_{\infty}^{\text{''}} \mathbb{H}^3 \quad \mathbb{D}_{\infty}^{\text{''}} \mathbb{H}^3$$

if f is absolutely continuous on lines

($\Rightarrow f$ differentiable almost everywhere)

and

$$\operatorname{ess\,sup}_{p \in \mathbb{C}P^1} \frac{\text{major axis of } df_p(\mathbb{S}^1)}{\text{minor axis of } df_p(\mathbb{S}^1)} < k$$

f 1-quasiconformal $\Leftrightarrow f$ Möbius

Λ is a K -quasicircle $\Leftrightarrow \Lambda = f(\text{great circle})$
for f K -quasiconformal

Thm (S. '15)

univ. $(1+\varepsilon) - qF$
 $\simeq S \times \{*\} \rightarrow$
 $\Sigma \subset (M, h)$
with $\varepsilon \leq \varepsilon_0$,

There exists $C, \varepsilon > 0$ such that for every

$$\sup_{p \in \Sigma} |\lambda(p)| \leq C\varepsilon$$

Cor If (M, h) is $(1 + \frac{1}{C}) - qF$, then the universal
surface homeomorphic to $S \times \{*\}$ is unique.